

KIT DIDATTICI

I kit didattici noleggiabili costituiscono uno strumento utile per portare un'attività di biologia molecolare dai nostri laboratori presso le vostre scuole

- Chi è il colpevole?
- OGM
- Sano o malato?
- Analisi cromosomiche
- Cristallizzazione del lisozima

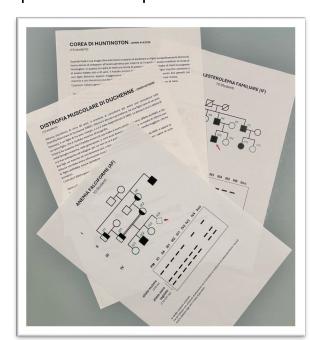
Materiale comune a tutti i kit

- 13 micropipette
- 4 scatole di puntali
- 13 vetrini in plexiglass
- 13 provette da 1,5 ml contenenti acqua distillata
- 13 provette da 1,5 ml contenenti colorante blu

Materiale kit 'Chi è il colpevole?', 'OGM', 'Sano o malato?'

- Cella elettroforetica di piccole dimensioni con transilluminatore incorporato (flashgel system)
- gel da 13 pozzetti pronti per l'utilizzo (gel precast o flashgel)
- alimentatore di corrente a cui collegare gli elettrodi della cella elettroforetica (power supply)
- microcentrifuga
- serie da 13 campioni di DNA

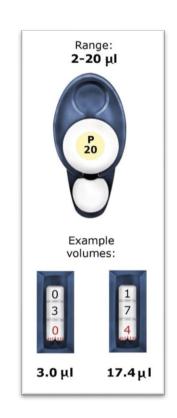
Materiale kit 'Chi è il colpevole?', 'OGM', 'Sano o malato?'



- Telo con sagoma della vittima
- attrezzatura polizia scientifica: tuta, guanti, mascherina, soprascarpe, occhiali, prove (ipotetici reperti biologici), sacchetti con pinzette per il recupero delle prove

Il kit dell'attività 'Sano o malato?' contiene:

- Storie di consulenza genetica
- alberi genealogici



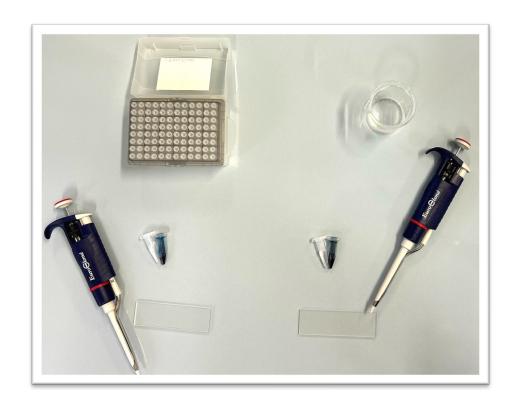
Esercitazioni con le micropipette

Suggerimenti:

- Illustrare il range di volumi entro cui la pipetta può lavorare
- mostrare agli studenti come impostare il volume ruotando il pistone e osservando le cifre. Per le p20 notare la presenza delle cifre decimali. Fare attenzione a non superare il limite minimo e massimo del range
- mostrare agli studenti come inserire il puntale, con una leggera pressione della micropipetta sul puntale inserito all'interno della scatola dei puntali

Esercitazioni con le micropipette

Spiegare come prelevare un volume di liquido:


- Premere sul pistone fino a quando non si percepisce una resistenza
- mantenendo premuto con il pollice, inserire il puntale dentro il liquido da prelevare (per esempio si può usare la provetta contenente acqua)
- rilasciare verso l'alto il pollice lentamente per prelevare il liquido
- espellere il puntale nel contenitore dei rifiuti usando l'apposito pulsante vicino al pistone

Esercitazioni con le micropipette

Disporre sul banco da lavoro il materiale in modo che gli studenti lavorino a coppie. Postazione tipo:

- Due vetrini in plexiglass
- due micropipette p20
- due provette con acqua
- due provette con colorante
- un contenitore dei rifiuti (es. un becher)
- una scatola di puntali

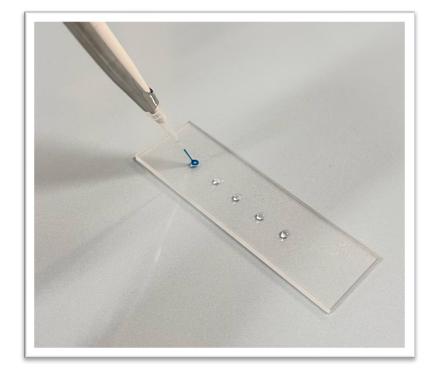
Diluizione seriale del colorante

- Ogni studente tiene in mano una p20 con puntale pulito e davanti a sé un vetrino in plexiglass
- L'esercizio prevede di prelevare 5 μl di acqua dalla provetta; rilasciarli sul vetrino in modo da creare una goccia d'acqua da 5 μl
- Ripetere lo stesso procedimento fino a formare 5 gocce di acqua da 5 μl ciascuna. Disporre le gocce in fila ben distanti l'una dall'altra
- Aprire la provetta di colorante e farne prelevare $5 \mu l$
- Rilasciare la goccia di colorante dentro la prima goccia di acqua: la goccia sarà ora formata da colorante e acqua (10 μl totali)
- Far prelevare da questa goccia 5 μl

IUS**M**ıBı

- Rilasciarli dentro la seconda goccia di acqua
- Dalla seconda goccia prelevare altri 5 μ l e metterli nella terza goccia e così via, fino all'ultima goccia

Se il lavoro di diluizione verrà fatto correttamente, le gocce risulteranno sempre più chiare per effetto della diluizione del colorante.

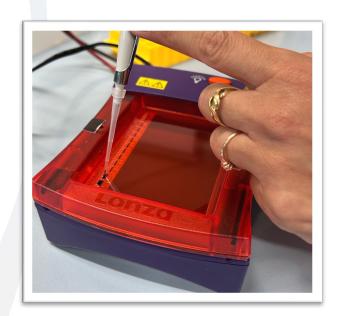

1. Posizionare 5 gocce d'acqua da 5 μl ciascuna di acqua sul vetrino

3. Risultato della diluizione seriale

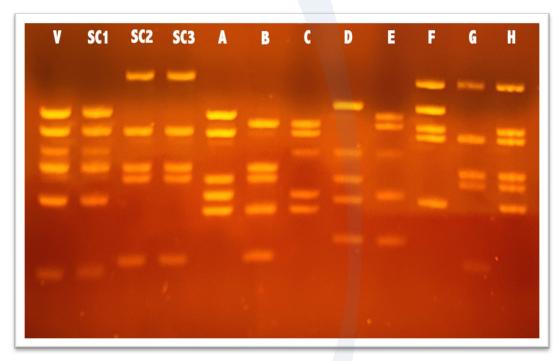
2. Procedere con la diluizione del colorante

Come allestire il bancone per l'elettroforesi

- Sistemare il flashgel system sul bancone collegando gli elettrodi al power supply che a sua volta viene collegato alla corrente elettrica.
 Collegare il macchinario per l'elettroforesi stesso alla corrente mediante lo spinotto per la visualizzazione del DNA
- aprire la confezione del flashgel
- eliminare la pellicola bianca che chiude i pozzetti
- incastrare il *flashgel* nell'apparecchio dell'elettroforesi seguendo le linee guida


Come preparare i campioni da caricare su gel

- Rimuovere dal frigo/freezer le provette contenenti il DNA e consegnarle agli studenti
- far aggiungere sulla parete interna della provetta 2 μl di loading dye 6X
- collegare la centrifuga alla corrente elettrica
- centrifugare brevemente («spinnare») per circa 5 secondi le provette avendo cura di disporle in maniera bilanciata


Caricamento dei campioni nei pozzetti

- Far caricare agli studenti i campioni all'interno dei pozzetti del gel: 4 μl di campione per pozzetto
- Premere START sull'alimentatore (150V)
- Attendere qualche minuto la corsa elettroforetica e controllare di tanto in tanto lo spostamento delle bande cliccando sul pulsante con il simbolo della lampadina

Esempio del risultato di un gel

LEGENDA GEL ('Chi è il colpevole?'):

V Vittima

SC1 Scena del Crimine 1

SC2 Scena del Crimine 2

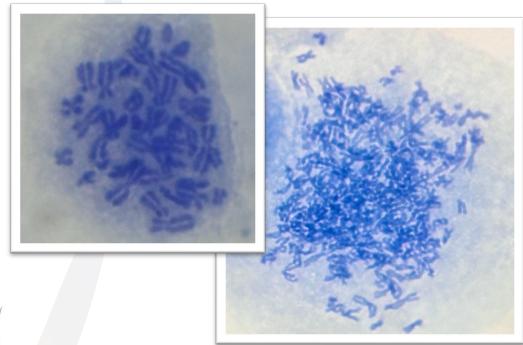
SC3 Scena del Crimine 3

A, ..., H Sospettati

Materiale kit 'Analisi cromosomiche'

- Una provetta contenente preparati cromosomici fissati in metafase di cellule umane sane di sangue periferico (SP cells) e/o una provetta contenente preparati cromosomici fissati in metafase di cellule umane tumorali HeLa. Le metafasi sono risospese in una soluzione di etanolo e acido acetico
- una scatola contenente vetrini portaoggetto
- una scatola contenente vetrini coprioggetto
- colorante blu di metilene 0,05%

Le provette con i preparati cromosomici vanno conservate in freezer.
Possono essere riposte in frigo solo qualche ora prima
dell'esperimento.



Allestimento dei banconi:

• Disporre i banconi per le esercitazioni con le micropipette (vedi pag. 6)

Preparare inoltre i banconi con:

- un microscopio ottico (consigliato uno per coppia di studenti)
- un vetrino portaoggetto per ciascuno studente
- una scatola di vetrini coprioggetto
- matite
- becher con provetta contenente il colorante blu di metilene e pipetta Pasteur

Al termine delle esercitazioni con le micropipette, ogni studente dovrà:

- prendere il proprio vetrino portaoggetto facendo attenzione a toccarlo dalla parte della banda sabbiata
- scrivere il proprio nome sulla banda sabbiata con la matita
- risospendere il contenuto delle provette picchiettando con piccoli colpi delle dita sul fondo delle stesse
- prelevare con un puntale pulito 5 μ l da una provetta con le metafasi (a scelta fra SP e HeLa)
- inclinare il vetrino portaoggetto di circa 45°
- ponendo il puntale al centro del vetrino, far scivolare la goccia
- far asciugare qualche istante la soluzione, che evaporerà immediatamente
- prelevare del blu di metilene con la pipetta Pasteur
- ponendo il vetrino in piano sul bancone, rilasciare una goccia di colorante sulle metafasi (di cui sarà visibile un alone)
- coprire con vetrino coprioggetto, cercando di evitare la formazione di bolle d'aria
- osservare il vetrino al microscopio partendo dall'ingrandimento più piccolo

Materiale kit 'Cristallizzazione del lisozima'

- Provetta con soluzione di lisozima (40 ng/ml)
- Soluzione di NaCl al 20%
- Soluzione tampone pH 4.5 50 mM
- Acqua distillata
- Una scatola contenente vetrini coprioggetto
- Piastre multiwell per la cristallizzazione
- Micropipette p20, p200 e p1000 e puntali corrispondenti

Allestimento dei banconi:

• Disporre i banconi per le esercitazioni con le micropipette (vedi pag. 6)

Preparare inoltre i banconi con:

- Uno stereomicroscopio o un microscopio ottico (consigliato uno per coppia di studenti)
- un vetrino coprioggetto per ciascuno studente
- una piastra di cristallizzazione per coppia di studenti
- eventuale vetrino portaoggetto

Preparazione della soluzione di cristallizzazione :

- Ogni studente preparerà 500 μl di soluzione di cristallizzazione pipettando all'interno di un pozzetto della multiwell secondo il seguente schema:
 200 μl di NaCl 20%
 25 μl di tampone a pH 4.5 50 mM
 275 μl di acqua distillata
- Mescolare con un puntale le soluzioni all'interno del pozzetto
- pipettare 2 μl di soluzione di lisozima al centro di un vetrino coprioggetto
- aggiungere alla goccia di lisozima sul vetrino 2 μ l di soluzione di cristallizzazione prelevata dal pozzetto
- capovolgere il vetrino con la goccia di $4~\mu l$ pendente sul pozzetto con la soluzione di cristallizzazione

In alternativa, si possono effettuare delle prove aumentando il volume di NaCl a 225 µl e diminuendo di conseguenza il volume di acqua

- Coprire la piastra di cristallizzazione con il coperchio per prevenire l'evaporazione della goccia e per garantire il corretto raggiungimento dell'equilibrio di vapore necessario per la cristallizzazione della proteina
- mantenere la piastra a temperatura ambiente senza muoverla, per circa 1,5 h
- se si ha a disposizione lo stereomicroscopio, porre la piastra sotto l'obiettivo senza aprire il coperchio e osservare la formazione dei cristalli di lisozima
- se si ha a disposizione il microscopio ottico, aprire la piastra, sollevare delicatamente il vetrino coprioggetto dal pozzetto, ruotarlo di 180° e porlo su un vetrino portaoggetto
- visualizzare al microscopio ottico a partire dall'ingrandimento più piccolo.

